化简
[(a-2)/(a*a+2a)-(a-1)/(a*a+4a+4)]/[(a-4)/(a+2)]
={(a-2)/[a(a+2)]-(a-1)/(a+2)²} ×[(a+2)/(a-4)]
=[(a²-4)-a(a-1)]/[a(a+2)²] ×[(a+2)/(a-4)]
=(a-4)/[a(a+2)²]×(a+2)/(a-4)
=1/[(a(a+2)
∵a=√2-1
∴a+2=√a+1
∴a(a+2)=(√2-1)(√2+1)=1
∴原式=1/[(a(a+2)]=1
化简
[(a-2)/(a*a+2a)-(a-1)/(a*a+4a+4)]/[(a-4)/(a+2)]
={(a-2)/[a(a+2)]-(a-1)/(a+2)²} ×[(a+2)/(a-4)]
=[(a²-4)-a(a-1)]/[a(a+2)²] ×[(a+2)/(a-4)]
=(a-4)/[a(a+2)²]×(a+2)/(a-4)
=1/[(a(a+2)
∵a=√2-1
∴a+2=√a+1
∴a(a+2)=(√2-1)(√2+1)=1
∴原式=1/[(a(a+2)]=1