连接AO并延长交圆O于点E
∵AE为直径
∴∠ACE为直角 既 △ACE为Rt△
∵AD⊥BC于D
∴∠ADB为直角,
∴在Rt△ADB中,sin∠B=1/3
∵弧AC=弧AC
∴∠B=∠E
∴sin∠E=1/3
∴在Rt△ACE中,AE=AC÷sin∠E=3÷(1/3)=9
答:圆O直径为9.
连接AO并延长交圆O于点E
∵AE为直径
∴∠ACE为直角 既 △ACE为Rt△
∵AD⊥BC于D
∴∠ADB为直角,
∴在Rt△ADB中,sin∠B=1/3
∵弧AC=弧AC
∴∠B=∠E
∴sin∠E=1/3
∴在Rt△ACE中,AE=AC÷sin∠E=3÷(1/3)=9
答:圆O直径为9.