已知函数y=f(x)是实数集R上的减函数,且f(x)在实数集R上恒大于零,探求函数F(x)=1/f(x)的单调性,证明
1个回答
【证明】
任取x1,x2∈R
则当x2>x1时
Δy=1/f(x2)-1/f(x1)
=[f(x1)-f(x2)]/x1x2
∵f(x)在R上单调减
∴f(x2)0
∴F(x)为增函数
相关问题
已知f(x)是实数集R上的函数,且对任意x∈R,f(x)=f(x+1)+f(x-1)恒成立.
已知f(x)是实数集R上的函数,且对任意x R,f(x)=f(x+1)+f(x-1)恒成立.
已知f(x)是实数集R上的函数,且对任意x∈R,f(x)=f(x+1)+f(x-1)恒成立.
已知f(x)是实数集R上的函数,且对任意x∈R,f(x)=f(x+1)+f(x-1)恒成立.
已知f(x)是实数集R上的函数,且对任意x∈R,f(x)=f(x+1)+f(x-1)恒成立.
已知定义在实数集R上的函数y=f(x)满足:f(x+y)=f(x)+f(y),且f(x)不恒等于零,则y=f(x)是(
已知f(x)是实数集R上的函数,且对任意x属于R,f(x)=f(x+1)+f(x-1)恒成立
已知定义在实数集R上的函数f(x)满足f(1)=1,且f(x)的导数f′(x)在R上恒有f′(x)<12(x∈R),则不
F(X)在实数集上R是减函数,F(2X-X2)的单调区间是什么
已知定义在实数集R上的函数f(x)满足f(1)=2,且f(x)的导数f′(x)在R上恒有f′(x)<1(x∈R),则不等