已知x+y xy x4+y4 求x4-y4

1个回答

  • 设x+y=m(1)

    xy=n(2)

    x^4+y^4=p(3)

    由(1)(x+y)²=m²,

    x²+2xy+y²=m²

    x²+y²=m²-2n,

    (x²+y²)²=(m²-2n)²

    x^4+2x²y²+y^4=(m²-2n)²

    x^4+y^4=(m²-2n)²-2n²

    (x^4+y^4)²=[(m²-2n)²-2n²]²

    x^8+2x^4y^4+y^8=[(m²-2n)²-2n²]²

    x^8-2x^4y^4+y^8=[(m²-2n)²-2n²]2²-4n^4

    (x^4-y^4)²=[(m²-2n)²-2n²]²--4n^4

    ∴x^4-y^4=√[(m²-2n)²-2n²]²--4n^4