所求曲面的面积=2π∫y√(1+y'²)dx
=2π∫sinx√(1+cos²x)dx
=-2π∫√(1+cos²x)d(cosx)
=-2π[(cosx/2)√(1+cos²x)+(1/2)ln│cosx+√(1+cos²x)│]│
=-2π[-√2/2+ln(√2-1)/2-√2/2-ln(√2+1)/2]
=-2π[-√2-ln(√2+1)]
=2π[√2+ln(√2+1)]
所求曲面的面积=2π∫y√(1+y'²)dx
=2π∫sinx√(1+cos²x)dx
=-2π∫√(1+cos²x)d(cosx)
=-2π[(cosx/2)√(1+cos²x)+(1/2)ln│cosx+√(1+cos²x)│]│
=-2π[-√2/2+ln(√2-1)/2-√2/2-ln(√2+1)/2]
=-2π[-√2-ln(√2+1)]
=2π[√2+ln(√2+1)]