(1)bn=a(n+1)-an/3=(1/2)^(n+1)
b(n+1)=a(n+2)-a(n+1)/3=(1/2)^(n+2)
b(n+1)/bn=1/2
等比数列
(2)a(n+1)-3*(1/2)^(n+1)=an/3-2*(1/2)^(n+1)=1/3*(an-3*(1/2)^n)
an-3*(1/2)^n为等比数列
an-3*(1/2)^n=(1/3)^(n-1)
从而an=-2*(1/3)^n+3*(1/2)^n (n>=2)
a1也符合故此即为通项
(1)bn=a(n+1)-an/3=(1/2)^(n+1)
b(n+1)=a(n+2)-a(n+1)/3=(1/2)^(n+2)
b(n+1)/bn=1/2
等比数列
(2)a(n+1)-3*(1/2)^(n+1)=an/3-2*(1/2)^(n+1)=1/3*(an-3*(1/2)^n)
an-3*(1/2)^n为等比数列
an-3*(1/2)^n=(1/3)^(n-1)
从而an=-2*(1/3)^n+3*(1/2)^n (n>=2)
a1也符合故此即为通项