2cos²θ+(sinθ)^4-(cosθ)^4-1
=2cos²θ-1+(sin²θ+cos²θ)(sin²θ-cos²θ)
=cos2θ-(cos²θ-sin²θ)
=cos2θ-cos2θ
=0
∴ 2cos²θ+(sinθ)^4=(cosθ)^4+1
2cos²θ+(sinθ)^4-(cosθ)^4-1
=2cos²θ-1+(sin²θ+cos²θ)(sin²θ-cos²θ)
=cos2θ-(cos²θ-sin²θ)
=cos2θ-cos2θ
=0
∴ 2cos²θ+(sinθ)^4=(cosθ)^4+1