因为定义域是[-2,2]
所以 -2 ≤ 1 - m ≤ 2 且 -2 ≤ -m ≤ 2
所以 -1 ≤ m ≤ 2
f(1 - m) + f(-m) < 0
f(1 - m) < -f(-m)
因为 f(x)是奇函数
所以 - f(-m) = f(m)
所以 f(1 - m) < f(m)
因为f(x)在定义域[-2,2]上单调递减
所以 1 - m > m
所以 m < 1/2
综上:-1 ≤ m < 1/2
因为定义域是[-2,2]
所以 -2 ≤ 1 - m ≤ 2 且 -2 ≤ -m ≤ 2
所以 -1 ≤ m ≤ 2
f(1 - m) + f(-m) < 0
f(1 - m) < -f(-m)
因为 f(x)是奇函数
所以 - f(-m) = f(m)
所以 f(1 - m) < f(m)
因为f(x)在定义域[-2,2]上单调递减
所以 1 - m > m
所以 m < 1/2
综上:-1 ≤ m < 1/2