证:
由正弦定理,及(2a-c)cosB=bcosC
得, (2sinA-sinC)cosB=sinBcosC
2sinAcosB-sinCcosB=sinBcosC
2sin[π-(B+C)]cosB=sinBcosC+sinCcosB
2sin[π-(B+C)]cosB=sin[π-(B+C)]
又,A>0
所以B+C
证:
由正弦定理,及(2a-c)cosB=bcosC
得, (2sinA-sinC)cosB=sinBcosC
2sinAcosB-sinCcosB=sinBcosC
2sin[π-(B+C)]cosB=sinBcosC+sinCcosB
2sin[π-(B+C)]cosB=sin[π-(B+C)]
又,A>0
所以B+C