∠BOE是ΔABO的外角,∴∠BOE=∠OAB+∠OBA,
∵OA、OB平分∠BAC,∠ABC,
∴∠BOE=1/2(∠BAC+∠ABC)=1/2(180°-∠ACB)=90°-1/2∠ACB,
∵OC平分∠ACB,∴∠OCD=1/2∠ACB,
∵OD⊥BC,∴∠COD=90°-∠OCD=90°-1/2∠ACB,
∴∠BOE=∠COD,
∴∠BOE+∠DOE=∠COD+∠DOE,
即∠BOD=∠COE.
∠BOE是ΔABO的外角,∴∠BOE=∠OAB+∠OBA,
∵OA、OB平分∠BAC,∠ABC,
∴∠BOE=1/2(∠BAC+∠ABC)=1/2(180°-∠ACB)=90°-1/2∠ACB,
∵OC平分∠ACB,∴∠OCD=1/2∠ACB,
∵OD⊥BC,∴∠COD=90°-∠OCD=90°-1/2∠ACB,
∴∠BOE=∠COD,
∴∠BOE+∠DOE=∠COD+∠DOE,
即∠BOD=∠COE.