设AE与CD的交点为O,CE与AB的交点为P
∵⊿PBC与⊿PEA因为有∠BPC=∠EPA(对顶角)
∴∠B+∠ECB=∠E+∠EAB ⑴
∵⊿ODA与⊿OEC因为有∠DOA=∠EOC(对顶角)
∴∠D+∠DAE=∠E+∠ECD ⑵
∴∠B+∠ECB+∠D+∠DAE =2∠E+∠EAB+∠ECD ⑴与⑵左右相加
∵:AE是∠BAD的平分线,CE上∠BCD的平分线
∴∠DAE =∠EAB
∠ECB =∠ECD
∴∠B +∠D =2∠E
∴∠E=1/2(∠B +∠D)
∵,∠ADC=50°,∠ABC=30°
∴∠E=40°