f(π/6)=f(π/2),正弦函数是轴对称函数,这两个函数值相等,则对称轴为(π/6+π/2)/2
已知函数f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/2),且f(x)在区间(π/6,π/2)无最小
2个回答
相关问题
-
1.已知函数f(x)=sin(wx+π/3) (w>0) 若f(π/6)=f(π/2),且f(x)在区间(π/6,π/2
-
已知f(x)=sin(wx+π/3)(w>0),f(π/6)=f(π/2),且f(x)在区间(π/6,π/2)有最大值,
-
函数f(x)=sin(wx+π/3)(w>0),若f(π/6)=f(π/2),且f(x)在区间(π/6,π/2)内有最大
-
已知函数f(x)=sin(wx+π/3) (w>0) 若f(π/6)=f(π/3),闭区间【π/6,π/3】内有最大值,
-
已知函数f(x)=sin(ωx+π/3),f(π/6)=f(π/3),且f(x)在区间(π/6,π/3)有最小值无最大值
-
已知函数f(x)=sin(ωx+π3)(ω>0),若f(π6)=f(π3)且f(x)在区间(π6,π3)上有最小值,无最
-
已知函数f(x)=sin(ωx+π3)(ω>0),若f(π6)=f(π3)且f(x)在区间(π6,π3)上有最小值,无最
-
已知函数f(x)=sin(ωx+π3)(ω>0),若f(π6)=f(π3)且f(x)在区间(π6,π3)上有最小值,无最
-
已知函数f(x)=sin(ωx+π3)(ω>0),若f(π6)=f(π3)且f(x)在区间(π6,π3)上有最小值,无最
-
已知函数f(x)=sin(ωx+π3)(ω>0),若f(π6)=f(π3)且f(x)在区间(π6,π3)上有最小值,无最