g(x)为奇,则g(0)=0,g(-1)=1,g(1)=-1;
f(x-1)=g(x)=-g(-x)=-f(-x-1);
f(x)为偶数,则f(-x-1)=f(x+1);
所以f(x-1)= =-f(-x-1)=-f(x+1);
根据f(x-1)=-f(x+1)令x'=x+1,得 f(x)=-f(x+2);
根据f(x-1)=-f(-x-1)令x'=x-1,得 f(x-2)=-f(-x)=-f(x);
即,f(x-2)=f(x+2),函数f(x)的周期为4
f(2007)=f(-1)=g(0)[令x=0]=0,
f(2008)=f(0)=g(1)[令x=1]=-1.
f(2007)+f(2008)=-1.