∫¹(1-x²)∧(2/3)dx 0 用换元法,

2个回答

  • ∫ [0-->1] (1-x^2)^(3/2) dx

    令x=sinu,则dx=cosudu,x:0-->1,u:0-->π/2,此时所有三角函数为正,(1-x^2)^(3/2)=(cosu)^3

    代入原式=∫ [0-->π/2] (cosu)^3*cosu du

    =∫ [0-->π/2] (cosu)^4 du

    =∫ [0-->π/2] (1/2(1+cos2u))^2 du

    =1/4∫ [0-->π/2] (1+cos2u)^2 du

    =1/4∫ [0-->π/2] (1+2cos2u+(cos2u)^2) du

    =1/4∫ [0-->π/2] (1+2cos2u+1/2(1+cos4u)) du

    =1/4∫ [0-->π/2] (3/2+2cos2u+1/2cos4u) du

    =1/4 (3/2u+sin2u+1/8sin4u) [0-->π/2]

    =3π/16