直线PQ方程:(6+3)/(2+1)=(y+3)/(x+1),y=3x,
PQ中点M坐标:Px=(-1+2)/2=1/2,Py=(6-3)/2=3/2,
M(1/2,3/2),垂直平分线斜率为PQ直线斜率的负倒数为-1/3
PQ的垂直平分线方程,(y-3/2)/(x-1/2)=-1/3,
y=-x/3+5/3,
圆心坐标在PQ线段的垂直平分线和直线x+2y-4=0的交点上,
得交点坐标x=2,y=1,
圆心坐标C(2,1),
圆方程:(x-2)^2+(y-1)^2=R^2,
Q 点坐标代入,R^2=25,
∴圆方程为::(x-2)^2+(y-1)^2=25,
圆心C(2,1)至直线距离:d=|(k-1)*2+2*1+5-3k|/√[(k-1)^2+4],
d=|5-k|/√(k^2-2k+5),
两边平方,
(5-k)^2=d^2(k^2-2k+5),
(1-d^2)k^2+2(d^2-5)k+5(5-d^2)=0,
要使k有实数解,则判别式△≥0,
d^4-5d^2≤0,
0≤d^2≤5,
0≤d≤√5,
圆心距最大,则弦最小,
当d=√5时,弦最小,
设弦为EF,
根据勾股定理,|EF|/2=√(R^2-d^2)=√(25-5)=2√5,
∴|EF|=4√5.