令e^x=t
则原式=∫arctant/t*1/tdt
=∫arctant/t^2dt
=-∫arctantd(1/t)
=-arctant/t+∫1/t*1/(t^2+1)dt
=-arctant/t+∫(1/t-t/(t^2+1))dt
=-arctant/t+∫dt/t-1/2∫d(t^2+1)/(t^2+1)
=-arctant/t+ln|t|-1/2ln|t^2+1|+C
=-arctan(e^x)/e^x+x-1/2ln(e^(2x)+1)+C
令e^x=t
则原式=∫arctant/t*1/tdt
=∫arctant/t^2dt
=-∫arctantd(1/t)
=-arctant/t+∫1/t*1/(t^2+1)dt
=-arctant/t+∫(1/t-t/(t^2+1))dt
=-arctant/t+∫dt/t-1/2∫d(t^2+1)/(t^2+1)
=-arctant/t+ln|t|-1/2ln|t^2+1|+C
=-arctan(e^x)/e^x+x-1/2ln(e^(2x)+1)+C