某同学采用如图1所示的装置探究“物体质量一定时,其加速度与所受合外力的关系”.

1个回答

  • 解题思路:(1)在匀变速直线运动中,中间时刻的瞬时速度等于该过程中的平均速度,据此可求出3点的瞬时速度大小,根据作差法求出加速度.

    (2)在匀变速直线运动中,v=v0+at,故v-t图象应为线性关系,连线求出图线的斜率即为加速度.

    (3)由原理F=Ma结合图象可F与a的关系,斜率的意义.

    (1)由于每相邻两个计数点间还有4个点没有画出,所以相邻的计数点间的时间间隔T=0.1s,

    中间时刻的瞬时速度等于该过程中的平均速度:

    v3=[0.0642−0.0275/2×0.1]=0.23m/s,

    根据逐差法得:

    a=

    0.0934−0.0389−0.0389

    (2×0.1)2=m/s2

    (2)在匀变速直线运动中,v=v0+at,故v-t图象应为线性关系,画图时让尽量多的点落在直线上即可,图象如图所示.

    图象的斜率表示加速度,则a=[△v/△t]=1.0m/s

    (3)A:由图线可得:F与a成正比,故A正确.

    B:小车的加速度:a=[mg/m+M],所以加速度不可能大于g,故B错误.

    C:图线的斜率k=[1/M]=2,所以:M=0.5kg,故C错误.

    D:因为图线是过原点的直线,故满足配重的质量m远小于小车的质量M,故D正确.

    故选:AD

    故答案为:(1)0.23;0.54(2)如图; 1.0(3)AD

    点评:

    本题考点: 探究加速度与物体质量、物体受力的关系.

    考点点评: 对该实验要明确实验原理,在此基础上对器材的选择,误差分析,注意事项等问题进行分析会起到事半功倍的效果.