令BD=x,BC=2x
cosB=[(√2)²+x²-(√6)²]/(2√2*x)=(x²-4)/(2√2x)
cosB=[(√2)²+(2x)²-(√26)²]/(2√2*2x)=(x²-6)/(√2x)
(x²-4)/(2√2x)=(x²-6)/(√2x)
∴x=2√2
cos∠ADB=[(2√2)²+(√6)²-(√2)²]/(2*2√2*√6)=√3/2
∠ADB=30°
令BD=x,BC=2x
cosB=[(√2)²+x²-(√6)²]/(2√2*x)=(x²-4)/(2√2x)
cosB=[(√2)²+(2x)²-(√26)²]/(2√2*2x)=(x²-6)/(√2x)
(x²-4)/(2√2x)=(x²-6)/(√2x)
∴x=2√2
cos∠ADB=[(2√2)²+(√6)²-(√2)²]/(2*2√2*√6)=√3/2
∠ADB=30°