(1)∵椭圆的右焦点F(1,0),
∴
=1,p=2,
∴抛物线C的方程为y 2=4x,
其准线方程为x=﹣1.
(2)假设存在符合题意的直线l,其方程为2x+b,
由
,得y 2﹣2y+2b=0,
∵直线l与抛物线有公共点,
∴△=4﹣8b≥0,即b≤
,
∵直线OP与l的距离d=
,
∴
,即b=±1.
从而b=﹣1.
∴符合题意的直线l存在,其方程为y=2x﹣1.
(1)∵椭圆的右焦点F(1,0),
∴
=1,p=2,
∴抛物线C的方程为y 2=4x,
其准线方程为x=﹣1.
(2)假设存在符合题意的直线l,其方程为2x+b,
由
,得y 2﹣2y+2b=0,
∵直线l与抛物线有公共点,
∴△=4﹣8b≥0,即b≤
,
∵直线OP与l的距离d=
,
∴
,即b=±1.
从而b=﹣1.
∴符合题意的直线l存在,其方程为y=2x﹣1.