已知:x+y+z=0,求证"x^3+y^3+z^3=3xyz
2个回答
x^3+y^3+z^3=3xyz
x^3+y^3+z^3-3xyz=0
(x+y+z)(x^2+y^2+z^2-xy-yz-xz)
因为x+y+z=0,
所以x^3+y^3+z^3-3xyz=0
x^3+y^3+z^3=3xyz
相关问题
已知X+Y+Z=0,求证X^3+Y^3+Z^3=3XYZ
已知x+y+z=o,求证x+y+z=3xyz
x+y-z=0求证x^3+8y^3=z^3-6xyz
已知xyz属于R+,x+y+z=1,求证x^3/(y(1-y))+y^3/(z(1-z))+z^3/(x(1-x))大于
已知3x-4y-z=0.2x+y-z=0,且xyz=0,求x+2y-3z/3x-2y+3z
已知xyz满足x-2y+3z=0,2x-3y+4z=0,求x:y:z
已知2x-3y+3z=0,3x-2y-6z=0,xyz≠0,求x²+y²+z²/2x&su
已知:2x-3y+z=0,3x-2y-6z=0,xyz≠0,求x²+y²+z²/2x
已知xyz≠0,且x+3y+z=0,2x+3y-z=0 ,求x+2y-7z /3x+5y+z的值?
已知方程组4x-3y-3z=0 x+3y+z=0(xyz不等于0),求x/y y/z的值