如图所示,O为正方形ABCD的中心,
∵BO⊥AC,DO⊥AC,
∴AC⊥面BOD,
∵AC?面ABC,∴面BOD⊥面ABC
∴BD在面ABC的射影是BO,∠BDO=φ是直线BD与面ABC所成角.
设∠BOD=θ(0°<θ<180°),正方形ABCD的边长为1,则BO=DO=
2
2
∴△BOD的面积=
1
2 BO×DO×sinθ=
1
4 sinθ.
∴三棱锥体积=
1
3 S △BOD×AC=
2
12 sinθ≤
2
12 ,
∴θ=90°时,三棱锥体积最大,此时△BOD是等腰Rt△,
∴φ=45°,即当A,B,C,D四点为顶点的三棱锥体积最大时候,直线BD与面ABC所成角为45°.
故答案为
π
4 .