求导:
y=3^(3-4x)
y'=[3^(3-4x)](ln3)(-4)=-4ln3[3^(3-4x)]
y=sin[ln(4-x)]
y'={cos[ln(4-x)]}[-1/(4-x)]=[1/(x-4)]cos[ln(4-x)]
y=arccos√(2-3x)
y'=-{-3/[2√(2-3x)]}/√[1-(2-3x)]=3/{2√[(2-3x)(-1+3x)]}=3/[2√(-9x²+9x-2)]
y=lnsin√(x³+1)
求导:
y=3^(3-4x)
y'=[3^(3-4x)](ln3)(-4)=-4ln3[3^(3-4x)]
y=sin[ln(4-x)]
y'={cos[ln(4-x)]}[-1/(4-x)]=[1/(x-4)]cos[ln(4-x)]
y=arccos√(2-3x)
y'=-{-3/[2√(2-3x)]}/√[1-(2-3x)]=3/{2√[(2-3x)(-1+3x)]}=3/[2√(-9x²+9x-2)]
y=lnsin√(x³+1)