已知∠PF1F1=A ,∠PF2F1=B(改成大写,以免与方程中的a,b混淆)
∠F1PF2=π-A-B
sin∠F1PF2=sin(A+B)
利用正弦定理
∴|PF1|/sinB=|PF2|/sinA=2c/sin(A+B)
∴|PF1|=2csinB/sin(A+B),|PF2|=2csinA/sin(A+B)
根据双曲线定义,(P在右支上)
∴ |PF1|-|PF2|=2a
∴2csinB/sin(A+B)-2csinA/sin(A+B)=2a
∴c(sinB-sinA)/sin(A+B)=a
∴c [2cos(B+A)/2*sin(B-A)/2]/[2sin(A+B)/2cos(A+B)/2]=a
∴e*[sin(B/2)cos(A/2)-cos(B/2)sin(A/2)]=sin(B/2)cos(A/2)+cos(B/2)sin(A/2)
∴ (e-1)sin(B/2)cos(A/2)=(e+1)cos(B/2)sin(A/2)
∴[sin(A/2)cos(B/2)]/[cos(A/2)sin(B/2)]=(e-1)/(e+1)
∴ tan(A/2)/tan(B/2)=(e-1)/(e+1)