过D点做DG‖EF,做DH⊥DG
∴∠ADG=∠AEF=23°
∵AB⊥EF
∴DH‖AB
∴∠BAD+∠ADH=180°
∴∠BAD=180°-∠ADH
∵∠ADH=∠GDH-∠GDA=90°-23°=67°
∵∠CAD=∠BAD-∠BAC
∴∠CAE=∠CAD=180°-∠ADH-∠BAC=180°-67°-38°=75°
2.过A点做AO⊥CD
∵∠ADC=60°
∴∠OAD=30°
∵AD=4
∴OD=2,AO=2根号3=3.4
又∵∠CAE=75°
∴∠CAO=∠CAD-∠OAD=75°-30°=45°
∴CO=AO=3.4,CA=根号2AO=根号6OD=2.4*2=4.8
∴大树原高度=AC+CD=4.8+3.4+2=8.4