方法一:
过E作EF∥CA交AB于F.
∵AC∥FE,∴∠CAE=∠AEF,又∠CAE=∠FAE,∴∠AEF=∠FAE,∴AF=EF.
∵AC∥FE、AC∥BD,∴FE∥BD,∴∠BEF=∠DBE,又∠DBE=∠FBE,
∴∠FBE=∠BEF,∴BF=EF.
由AF=EF、BF=EF,得:AF=BF,∴EF是梯形ABCD的中位线,∴EF=(AC+BD)/2.
由AF=EF、BF=EF,得:AF+BF=2EF,∴AB=2EF.
由AB=2EF、EF=(AC+BD)/2,得:AB=AC+BD.
方法二:
延长BE交AC的延长线于G.
∵AG∥BD,∴∠AGB=∠DBG,又∠ABG=∠DBG,∴∠ABG=∠AGB,∴AB=AG.
∵AC∥BD,∴∠CAB+∠DBA=180°,又∠BAE=∠CAB/2、∠ABE=∠DBA/2,
∴∠BAE+∠ABE=(∠CAB+∠DBA)/2=180°/2=90°,∴AE⊥BG.
由AB=AG、AE⊥BG,得:BE=GE.
∵AG∥BD,∴△BDE∽△GAE,又BE=GE,∴△BDE≌△GAE,∴BD=GC.
显然有:AG=AC+GC,∴AG=AC+BD.
由AB=AG、AG=AC+BD,得:AB=AC+BD.