1.x^2+xy=14①xy+y^2=2②
①+②,x^2+2xy+y^2=16
(x+y)^2=16
x+y=4
②-①,y^2-x^2=-12
(x+y)^2-x^2+y^2=16-12=4
2.根据 (a+b)^2= a^2 +2ab+b^2 组合为:
X^2+2*2*X+2^2+ y^2-2*3*y+3^2=0
(x+2)^2 + (y-3)^2=0
两个因式的和为零,那么只有他们分别为零,即:
X+2=0
y-3=0
得:X=-2 y=3
那么:X^y= -8
4.-4
5.(N+2)方-N方=4(N+1)