解题思路:(1)由图象性质可知,点A、B关于坐标原点对称,由此可以求出A可求B坐标;
(2)①根据勾股定理或对称性易知OA=OB,OP=OQ因此四边形APBQ一定是平行四边形;
②根据矩形的性质和正方形的性质可以推出它们的可能性.
(1)∵双曲线和直线y=k'x都是关于原点的中心对称图形,它们交于A,B两点,
∴B的坐标为(-4,-2),
(-m,-k'm)或(-m,−
k
m);
(2)①由勾股定理OA=
m2+(k′m)2,
OB=
(−m)2+(−k′m)2=
m2+(k′m)2,
∴OA=OB.
同理可得OP=OQ,
所以四边形APBQ一定是平行四边形;
②四边形APBQ可能是矩形,
此时m,n应满足的条件是mn=k;
四边形APBQ不可能是正方形(1分)
理由:点A,P不可能达到坐标轴,即∠POA≠90°.
点评:
本题考点: 反比例函数综合题.
考点点评: 此题难度中等,它考查了反比例函数、一次函数的图形和性质,勾股定理,平行四边形的性质,矩形和正方形的性质,综合性比较强.