由①得f(x)+f(y)=2f[(x+y)/2]cos[(x-y)/2]
1、令y=-x得f(x)为奇函数.
2、对x求偏导,并令y=-x,得f'(x)=f'(0)cosx,于是f(x)=f'(0)sinx+C.而f(0)=0,f(π/2)=1得C=0,f'(0)=1.故f(x)=sinx
3、√2+1/2,x=π/4
由①得f(x)+f(y)=2f[(x+y)/2]cos[(x-y)/2]
1、令y=-x得f(x)为奇函数.
2、对x求偏导,并令y=-x,得f'(x)=f'(0)cosx,于是f(x)=f'(0)sinx+C.而f(0)=0,f(π/2)=1得C=0,f'(0)=1.故f(x)=sinx
3、√2+1/2,x=π/4