由题意可知,
该曲线为一条抛物线,且对称轴为x=-a/2.
要满足以上条件,需分一下两种情况讨论:
⑴.当对称轴x=-a/2≥2或x=-a/2≤-2,
即当a≥4,或a≤-4的时候
f(2)≥0,f(-2)≥0
即可得出
a的取值为{a|-7≤a≤-4}
⑵.当对称轴x=-a/2∈[-2,2],
即当-4≤a≤4的时候
f(2)≥0,f(-2)≥0,
同时f(-a/2)≥0,
于是,得出
a的取值为{a|-4≤a≤7/3}
综上所述,可得出
a的取值范围为
{a|-7≤a≤7/3}
2.
可以把f(x)看作为关于a的一次函数g(x)=(x-1)a+x^2+3,
所以只需f(-2)=7-3a>=0,
f(2)=7+a>=0,
解得-7