已知二次函数F(x)=ax^2+bx+1/4(a、b均为实数),对任意实数X均有f(x)≥x成立,且f(1)=1.

1个回答

  • 这位朋友,如果F(x)是增函数,那么他的导数大于等于0,这里的大于等于,实际上是说f(x)的导数在个别点可以为零,例如对y=x^3求导,导数在x=0处取零,但他是在整个定义域上是单调的,高中可能没学严格单调这里不提了,但导数不能在一个连续的一段上为零,否则会出现一段水平直线,这不符合高中单调函数的定义,综合考虑以上情况,你给的命题:如果F(x)是增函数,那么他的导数大于等于0 成立,但它的反命题,如果F(x)的导数大于等于0,那么他是增函数,你就要判断他是否有一段导数为零了

    .不知道我说明白没有,关键是高等数学和高中数学的单调的定义有些许差别

    你可以试验一下等于的情况,b=-1时,导函数为x^2-2x+1,只有在x=1的情况下才有导函数为零,其余情况下都为正数,则可以判断为增函数,

    你可以先用带等号的不等式求解,再看取等的时候是否满足要求,判断就像我前面做的一样.