cosA=(b^2+c^2-a^2)/(2bc)=bc/2bc=1/2
故角A=60度.
cosC=根号3/3,则有sinC=根号(1-1/3)=根号(2/3)=根号6/3
正弦定理得:a/sinA=c/sinC
c=asinC/sinA=根号3*(根号6/3)/(根号3/2)=2根号6/3
cosA=(b^2+c^2-a^2)/(2bc)=bc/2bc=1/2
故角A=60度.
cosC=根号3/3,则有sinC=根号(1-1/3)=根号(2/3)=根号6/3
正弦定理得:a/sinA=c/sinC
c=asinC/sinA=根号3*(根号6/3)/(根号3/2)=2根号6/3