八下的分式问题.3a^+ab+2b^=0(ab不等于0)求a/b-b/a-a^+b^/ab的值.

3个回答

  • ab不等于0,说明a,b都不等于0.

    3a^2 + ab + 2b^2 = 0 等价于

    3(a/b)^2 + (a/b) + 2 = 0.

    记t = a/b

    3t^2 + t + 2 = 0.

    1^2 - 4*3*2 = - 23 < 0.

    方程无解.

    所以,不存在非零实数a,b能使得 3a^2 + ab + 2b^2 = 0成立.

    若题目是

    3a^2 + ab - 2b^2 = 0,求a/b - b/a - (a^2 + b^2)/(ab).

    解法如下

    ab不等于0,说明a,b都不等于0.

    a/b - b/a - (a^2 + b^2)/(ab)

    = a/b - b/a - a/b - b/a

    = -2b/a

    3a^2 + ab - 2b^2 = 0 等价于

    2(b/a)^2 - (b/a) - 3 = 0.

    记t = b/a

    2t^2 - t - 3 = 0.

    (2t - 3)(t + 1) = 0

    t = 3/2 或者t = -1.

    a/b - b/a - (a^2 + b^2)/(ab)

    = -2b/a

    = -2t

    = -3或者2