2010全国初中数学竞赛复赛试题

1个回答

  • 可能不太全,有的有答案有的没有,能找到的只有这些了,我们上午也刚考完

    TOT题好难.网址是http://www.***.com/ReadNews.asp?NewsID=2498

    里面有完整的还有图

    中国教育学会中学数学教学专业委员会

    “《数学周报》杯”2010年全国初中数学竞赛试题参考答案

    一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的. 请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)

    1.若 ,则 的值为( ).

    (A) (B) (C) (D)

    由题设得 .

    2.若实数a,b满足 ,则a的取值范围是 ( ).

    (A)a≤ (B)a≥4 (C)a≤ 或 a≥4 (D) ≤a≤4

    解.C

    因为b是实数,所以关于b的一元二次方程

    的判别式 ≥0,解得a≤ 或 a≥4.

    3.如图,在四边形ABCD中,∠B=135°,∠C=120°,AB= ,BC= ,CD= ,则AD边的长为( ).

    (A) (B)

    (C) (D)

    D

    如图,过点A,D分别作AE,DF垂直于直线BC,垂足分别为E,F.

    由已知可得

    BE=AE= ,CF= ,DF=2 ,

    于是 EF=4+ .

    过点A作AG⊥DF,垂足为G.在Rt△ADG中,根据勾股定理得

    AD = .

    4.在一列数 ……中,已知 ,且当k≥2时,

    (取整符号 表示不超过实数 的最大整数,例如 , ),则 等于( ).

    (A) 1 (B) 2 (C) 3 (D) 4

    B

    由 和 可得

    , , , ,

    , , , ,

    ……

    因为2010=4×502+2,所以 =2.

    5.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,……,重复操作依次得到点P1,P2,…, 则点P2010的坐标是( ).

    (A)(2010,2) (B)(2010, )

    (C)(2012, ) (D)(0,2)

    B由已知可以得到,点 , 的坐标分别为(2,0),(2, ).

    记 ,其中 .

    根据对称关系,依次可以求得:

    , , , .

    令 ,同样可以求得,点 的坐标为( ),即 ( ),

    由于2010=4 502+2,所以点 的坐标为(2010, ).

    二、填空题

    6.已知a= -1,则2a3+7a2-2a-12 的值等于 .

    0

    由已知得 (a+1)2=5,所以a2+2a=4,于是

    2a3+7a2-2a-12=2a3+4a2+3a2-2a-12=3a2+6a-12=0.

    7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t分钟,货车追上了客车,则t= .

    15

    设在某一时刻,货车与客车、小轿车的距离均为S千米,小轿车、货车、客车的速度分别为 (千米/分),并设货车经x分钟追上客车,由题意得

    , ①

    , ② . ③

    由①②,得 ,所以,x=30. 故 (分).

    8.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是 .

    如图,延长BC交x轴于点F;连接OB,AF CE,DF,且相交于点N.

    由已知得点M(2,3)是OB,AF的中点,即点M为矩形ABFO的中心,所以直线 把矩形ABFO分成面积相等的两部分.又因为点N(5,2)是矩形CDEF的中心,所以,

    过点N(5,2)的直线把矩形CDEF分成面积相等的两部分.

    于是,直线 即为所求的直线 .

    设直线 的函数表达式为 ,则

    解得 ,故所求直线 的函数表达式为 .

    9.如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的垂线AC分别交BE,BN于点F,C,过点C作AM的垂线CD,垂足为D.若CD=CF,则 .

    见题图,设 .

    因为Rt△AFB∽Rt△ABC,所以 .

    又因为 FC=DC=AB,所以 即 ,

    解得 ,或 (舍去).

    又Rt△ ∽Rt△ ,所以 , 即 = .

    10.对于i=2,3,…,k,正整数n除以i所得的余数为i-1.若 的最小值 满足 ,则正整数 的最小值为 .

    因为 为 的倍数,所以 的最小值 满足

    ,

    其中 表示 的最小公倍数.

    由于

    ,

    因此满足 的正整数 的最小值为 .

    三、解答题(共4题,每题20分,共80分)

    11.如图,△ABC为等腰三角形,AP是底边BC上的高,点D是线段PC上的一点,BE和CF分别是△ABD和△ACD的外接圆直径,连接EF. 求证: .

    证明:如图,连接ED,FD. 因为BE和CF都是直径,所以

    ED⊥BC, FD⊥BC,

    因此D,E,F三点共线. …………(5分)

    连接AE,AF,则

    ,

    所以,△ABC∽△AEF. …………(10分)

    作AH⊥EF,垂足为H,则AH=PD. 由△ABC∽△AEF可得

    ,

    从而 ,

    所以 . …………(20分)

    12.如图,抛物线 (a 0)与双曲线 相交于点A,B. 已知点A的坐标为(1,4),点B在第三象限内,且△AOB的面积为3(O为坐标原点).

    (1)求实数a,b,k的值;

    (2)过抛物线上点A作直线AC‖x轴,交抛物线于另一点C,求所有满足△EOC∽△AOB的点E的坐标.

    (1)因为点A(1,4)在双曲线 上,

    所以k=4. 故双曲线的函数表达式为 .

    设点B(t, ), ,AB所在直线的函数表达式为 ,则有

    解得 , .

    于是,直线AB与y轴的交点坐标为 ,故

    ,整理得 ,

    解得 ,或t= (舍去).所以点B的坐标为( , ).

    因为点A,B都在抛物线 (a 0)上,所以 解得 …………(10分)

    (2)如图,因为AC‖x轴,所以C( ,4),于是CO=4 . 又BO=2 ,所以 .

    设抛物线 (a 0)与x轴负半轴相交于点D, 则点D的坐标为( ,0).

    因为∠COD=∠BOD= ,所以∠COB= .

    (i)将△ 绕点O顺时针旋转 ,得到△ .这时,点 ( ,2)是CO的中点,点 的坐标为(4, ).

    延长 到点 ,使得 = ,这时点 (8, )是符合条件的点.

    (ii)作△ 关于x轴的对称图形△ ,得到点 (1, );延长 到点 ,使得 = ,这时点E2(2, )是符合条件的点.

    所以,点 的坐标是(8, ),或(2, ). …………(20分)

    13.求满足 的所有素数p和正整数m.

    .由题设得 ,

    所以 ,由于p是素数,故 ,或 . ……(5分)

    (1)若 ,令 ,k是正整数,于是 ,

    ,

    故 ,从而 .

    所以 解得 …………(10分)

    (2)若 ,令 ,k是正整数.

    当 时,有 ,

    ,

    故 ,从而 ,或2.

    由于 是奇数,所以 ,从而 .

    于是

    这不可能.

    当 时, , ;当 , ,无正整数解;当 时, ,无正整数解.

    综上所述,所求素数p=5,正整数m=9. …………(20分)

    14.从1,2,…,2010这2010个正整数中,最多可以取出多少个数,使得所取出的数中任意三个数之和都能被33整除?

    首先,如下61个数:11, , ,…, (即1991)满足题设条件. …………(5分)

    另一方面,设 是从1,2,…,2010中取出的满足题设条件的数,对于这n个数中的任意4个数 ,因为

    , ,

    所以 .

    因此,所取的数中任意两数之差都是33的倍数. …………(10分)

    设 ,i=1,2,3,…,n.

    由 ,得 ,

    所以 , ,即 ≥11. …………(15分)

    ≤ ,

    故 ≤60. 所以,n≤61.

    综上所述,n的最大值为61. …………(20分)