(1)∵向量m=(cos(B/2),1/2)与向量n=(1/2,cos(B/2))共线
∴m‖n
有 内积等于外积,
即cos²(B/2)=1/4
(1+cosB)/2=1/4
cosB=-1/2
∴B=120°
(2).A+C=60°
∴C=60°-A
∴2sin^2A+cos(C-A)=2sin^2A+cos(60°-2A)
=1-cos2A+1/2cos2A+√3/2sin2A
=-1/2cos2A+√3/2sin2A +1
=sin(2A-π/6)+1
∵0<A<π/3
∴-π/6<2A-π/6<π/2
∴-1/2<sin(2A-π/6)<1
∴1/2<sin(2A-π/6)+1<2
∴2sin^2A+cos(C-A)的取值范围 为(1/2,2)