证明由方程F(x-az,y-bz)=0确定的函数z=z(x,y)应满足a(ðz/ðx)+b(

3个回答

  • 设u=x-az,v=y-bz

    则,原方程写为 F(u,v)=0

    方程F(u,v)=0 两端分别对x,y求偏导得

    ðF/ðx=ðF/ðu*(ðu/ðx+ðu/ðz*ðz/ðx)+ðF/ðv*(ðv/ðz*ðz/ðx)

    =ðF/ðu*(1-a*ðz/ðx)+ðF/ðv*(-b*ðz/ðx)

    =ðF/ðu-a*ðF/ðu*ðz/ðx-b*ðF/ðv*ðz/ðx

    =ðF/ðu-(a*ðF/ðu+b*ðF/ðv)ðz/ðx

    =0

    得:ðz/ðx=a*(ðF/ðu)/(a*ðF/ðu+b*ðF/ðv)

    ðF/ðy=ðF/ðu*(ðu/ðz*ðz/ðy)+ðF/ðv*(ðv/ðy+ðv/ðz*ðz/ðy)

    =ðF/ðu*(-a*ðz/ðy)+ðF/ðv*(1-b*ðz/ðy)

    =-a*ðF/ðu*ðz/ðy+ðF/ðv-b*ðF/ðv*ðz/ðy

    =ðF/ðv-(a*ðF/ðu+b*ðF/ðv)*ðz/ðy

    得:ðz/ðy=a*(ðF/ðv)/(a*ðF/ðu+b*ðF/ðv)

    则,a(ðz/ðx)+b(ðz/ðy)

    =a*(ðF/ðu)/(a*ðF/ðu+b*ðF/ðv)+b*(ðF/ðv)/(a*ðF/ðu+b*ðF/ðv)

    =(a*ðF/ðu+b*ðF/ðv)/(a*ðF/ðu+b*ðF/ðv)

    =1