=(1-1/3)/2+(1/3-1/5)/2+…+(1/(n-1)-1/(n+1))/2=(1-1/(n+1))/2 =1/2-1/〔2(n+1)〕
计算[1/(1*3)]+[1/(3*5)]+[1/(5*7)]+...+{1/[(2n-1)(2n+1)}=?用代数式表
1个回答
相关问题
-
1+3+5+7+9+…+(2n-1)=?用代数式表示
-
1/1*3+1/3*5+1/5*7+.+1/(2n-1)(2n+1)=n/(2n+1)
-
1/(√3 +1) +( 1/√5+√3 )+ (1/√7+√5)+.+{1/√(2n+1)+√(2n-1)}
-
1.1/1*2+1/2*3+1/3*4+……+1/n(n+1) 2.1/1*3+1/3*5+1/5*7+……+1/(2n
-
1/1*5+1/3*7+1/5*9+.+1/(2n-1)(2n+3)
-
求和1/1·3+1/3·5+1/5·7+...+1/(2n+1)(2n-1)
-
求和:1/(1*3)+1/(3*5)+1/(5*7)+...+1/(2n-1)(2n+1)=?
-
1-3+5-7+·····+(-1)^(2n-1) *(4n-1)怎么计算呢?
-
数学归纳法证明-1+3-5+.+(-1)^n(2n-1)=(-1)^n*n1/1*3+1/3*5+1/5*7+.+1/(
-
计算:1-2+3-4+5-6+7-8+…+((-1)^N+1)*N