y''[x] - 3 y'[x] + 2 y[x] = 2*e^x,
y[x]=-2 e^x (1 + x) + e^ x C[1] + e^(2 x) C[2]
当x=0时,y=1,
于是-2 + C[1] + C[2]=1,
当x=0,y=1,时,斜率等于D[x^2-x+1]/D[x]=2 x - 1 = -1.
所以当x=0时,
y'[x]=-2 e^x - 2 e^x (1 + x) + e^x C[1] + 2 e^(2 x) C[2]
=-4 + C[1] + 2 C[2] = -1.
由
-2 + C[1] + C[2]=1,
-4 + C[1] + 2 C[2]=-1
得C[1] = 3,C[2] = 0
于是
y[x] = 3 e^x - 2 e^x (1 + x)