(I)抛物线y2=2px(p>0)的焦点为([p/2],0),准线为x=?
p
2,
由抛物线的定义可知:4=3+
p
2,p=2
∴抛物线方程为y2=4x;
(II)由于抛物线y2=4x的焦点F为(1,0),准线为x=-1,
设直线AB:x=my+1,与y2=4x联立,消去x,整理得:
y2-4my-4=0,
设A(x1,y1),B(x2,y2),P(-1,t),有
y1+y2=4m
y1y2=?4
易知k3=?
t
2,而k1+k2=
y1?t
x1+1+
y2?t
x2+1
=
(x2+1)(y1?t)+(x1+1)(y2?t)
(x1+1)(x2+1)=
(
y22
4+1)(y1?t)+(
y21
4+1)(y2?t)
(
y21
4+1)(
y22
4+1)
=
?t(4m2+4)
4m2+4=?t=2k3
∴存在实数λ=2,使得k1+k2=λk3恒成立.