sina+cosa
=√2(√2/2sina+√2/2cosa)
=√2(cosπ/4sina+sinπ/4cosa)
=√2sin(a+π/4)
=(1-√3)/4
sin(a+π/4)=(1-√3)/4÷√2=(√2-√6)/8
a+π/4=arcsin[(√2-√6)/8]+2kπ 或 a+π/4=π-arcsin[(√2-√6)/8]+2kπ
a=arcsin[(√2-√6)/8]+2kπ-π/4 或 a=3π/4-arcsin[(√2-√6)/8]+2kπ k∈z
sina+cosa
=√2(√2/2sina+√2/2cosa)
=√2(cosπ/4sina+sinπ/4cosa)
=√2sin(a+π/4)
=(1-√3)/4
sin(a+π/4)=(1-√3)/4÷√2=(√2-√6)/8
a+π/4=arcsin[(√2-√6)/8]+2kπ 或 a+π/4=π-arcsin[(√2-√6)/8]+2kπ
a=arcsin[(√2-√6)/8]+2kπ-π/4 或 a=3π/4-arcsin[(√2-√6)/8]+2kπ k∈z