解题思路:利用三角形中,sinB=sin(A+C)可求得sinB=sinAcosC+cosAsinC,与已知sinA+sinB=sinC•(cosA+cosB)联立,可求得cosC(sinB+sinA)=0,从而可判断△ABC的形状.
∵sinB=sin[180°-(A+C)]=sin(A+C)=sinAcosC+cosAsinC,
又∵sinA+sinB=sinC•(cosA+cosB),
∴sinA+sinAcosC+cosAsinC=sinCcosA+sinCcosB,
∴sinA=sinCcosB-sinAcosC,
在△ABC中,sinA=sin(B+C),
∴sin(B+C)=sinCcosB-sinAcosC,即sinBcosC+cosBsinC=sinCcosB-sinAcosC,
∴cosC(sinB+sinA)=0,
∵sinB>0,sinA>0,
∴cosC=0,
∴a2+b2=c2,
∴△ABC是直角三角形.
点评:
本题考点: 三角形的形状判断;正弦定理.
考点点评: 本题考查三角形的形状判断,着重考查两角和的正弦,求得cosC(sinB+sinA)=0是转化的关键,属于中档题.