解题思路:问题背景:根据全等三角形对应边相等解答;
探索延伸:延长FD到G,使DG=BE,连接AG,根据同角的补角相等求出∠B=∠ADG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等可得AE=AG,∠BAE=∠DAG,再求出∠EAF=∠GAF,然后利用“边角边”证明△AEF和△GAF全等,根据全等三角形对应边相等可得EF=GF,然后求解即可;
实际应用:连接EF,延长AE、BF相交于点C,然后求出∠EAF=[1/2]∠AOB,判断出符合探索延伸的条件,再根据探索延伸的结论解答即可.
问题背景:EF=BE+DF;
探索延伸:EF=BE+DF仍然成立.
证明如下:如图,延长FD到G,使DG=BE,连接AG,
∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,
∴∠B=∠ADG,
在△ABE和△ADG中,
DG=BE
∠B=∠ADG
AB=AD,
∴△ABE≌△ADG(SAS),
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=[1/2]∠BAD,
∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,
∴∠EAF=∠GAF,
在△AEF和△GAF中,
AE=AG
∠EAF=∠GAF
AF=AF,
∴△AEF≌△GAF(SAS),
∴EF=FG,
∵FG=DG+DF=BE+DF,
∴EF=BE+DF;
实际应用:如图,连接EF,延长AE、BF相交于点C,
∵∠AOB=30°+90°+(90°-70°)=140°,
∠EOF=70°,
∴∠EOF=[1/2]∠AOB,
又∵OA=OB,
∠OAC+∠OBC=(90°-30°)+(70°+50°)=180°,
∴符合探索延伸中的条件,
∴结论EF=AE+BF成立,
即EF=1.5×(60+80)=210海里.
答:此时两舰艇之间的距离是210海里.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题考查了全等三角形的判定与性质,读懂问题背景的求解思路,作辅助线构造出全等三角形并两次证明三角形全等是解题的关键,也是本题的难点.