已知sin^2x+cos^2x=1 分子配方 1-sin^4x-cos^4x=1+2sin^2xcos^2x-(sin^2x+cos^2x)^2=1+2sin^2xcos^2x-1=2sin^2xcos^2x 分母先用立方和公式,再配方 1-sin^6-cos^6x=1-(sin^2x+cos^2x)*(sin^4x-sin^2xcos^2x+cos^4x)=1-(sin^4x-sin^2xcos^2x+cos^4x)=1+3sin^2xcos^2x-(sin^2x+cos^2x)^2=3sin^2xcos^2x 因此原式=2/3
化简(1-cos^4x-sin^4x)/(1-cos^6x-sin^6x)
1个回答
相关问题
-
化简:1.根号下(1-sin^2)2.(1-cos^4x-sin^4x)/(1-cos^6x-sin^6x)
-
化简(1+sin4X-cos4X)÷(1+ sin4X+cos4X)
-
求值:(1-sin^6 x-cos^6 x)/(1-sin^4 x-cos^4 x)
-
化简[1-(sin^4x-sin^2cos^2x+cos^4x)/(sin^2)]+3sin^2x
-
1-cos4次方x-sin4次方x分之1-cos6次方x-sin6次方X 怎么化简
-
√2sin(x-π/4)+√6cos(x-π/4)化简
-
化简:2sin^4x+3\4sin^2(2x)+5cos^4x-1\2(cos4x+cos2x)
-
化简 √2/4sin(π/4-x)+√6/4cos(π/4-x)
-
化简cos^4x+sin^4x
-
化简cos2(x)/1+sin(x) +sin2(x)/1+cos(x)