证①∵ a,b,c为正实数,
∴ 1/a^3+1/b^3+1/c^3+abc=1/a^3+1/b^3+1/c^3+abc/3+abc/3+abc/3
≥6*6次√(1/a^3+1/b^3+1/c^3+abc/3+abc/3+abc/3)=6*6次√(1/3^3)
=2*6次√(3^6/3^3)≥=√2*6次√(3^3)=2√3
②∵1/a^3+1/b^3+1/c^3≥3*3次√[1/(a^3b^3c^3)]
∴1/a^3+1/b^3+1/c^3≥3/abc
又∵ 1/a^3+1/b^3+1/c^3+abc≥2√(3/abc*abc)=2√3.