1)证明:在图甲中,∵AB=BD,且∠A=45°,
∴∠ADB=45°,∠ABC=90° 即AB⊥BD.
在图乙中,∵平面ABD⊥平面BDC,且平面ABD∩平面BDC=BD,
∴AB⊥底面BDC,∴AB⊥CD.又∠DCB=90°,
∴DC⊥BC,且AB∩BC=B,∴DC⊥平面ABC.
(2)∵E、F分别为AC、AD的中点,∴EF∥CD,
又由(1)知,DC⊥平面ABC,∴EF⊥平面ABC,
∴VA-BFE=VF-AEB=1/3S△AEB*FE,在图甲中,∵∠ADC=105°,∴∠BDC=60°,∠DBC=30°,
由CD=a得BD=2a,BC=根号3a,EF=12CD=12a,∴S△ABC=1/2AB*BC=1/2*2a*根号3a=根号3*a^2,
∴S△AEB=根号3/2 *a^2,∴VA-BFE=1/3*根号3/2a^2*1/2a=根号3/12a^3.