设x=sint,dx=costdt,当x=0时,t=0,x=1,t=π/2,
原式=∫[0,π/2](sint)^3(cost)^2dt
=-∫[0,π/2](sint)^2(cos)^2]d(cost)
=∫[0,π/2][1-(cost)^2](cost)^2d(cost)
=-∫[0,π/2](cos)^2d(cost)+∫[0,π/2(cost)^4d(cost)
=[0,π/2]{-[(cost)^3/3-(cost)^5/5]
=-[0-(1/3-1/5)]
=2/15.
设x=sint,dx=costdt,当x=0时,t=0,x=1,t=π/2,
原式=∫[0,π/2](sint)^3(cost)^2dt
=-∫[0,π/2](sint)^2(cos)^2]d(cost)
=∫[0,π/2][1-(cost)^2](cost)^2d(cost)
=-∫[0,π/2](cos)^2d(cost)+∫[0,π/2(cost)^4d(cost)
=[0,π/2]{-[(cost)^3/3-(cost)^5/5]
=-[0-(1/3-1/5)]
=2/15.