令x+y=z,则dz/dx=1+dy/dx=1+1/cos(x+y)=1+1/cosz=(cosz+1)/cosz
故
cosz/(1+cosz)*dz=dx
[1-1/(1+cosz)]dz=dx
{1-1/[(1+2cos^2 (z/2)-1}dz=dx
[1-1/2*sec^2 (z/2)]dz=dx
两边分别积分得
z-tan(z/2)=x+C
也即
(x+y)-tan[(x+y)/2]-x=C
或
(x+y)-sin(x+y)/[1+cos(x+y)]-x=C
令x+y=z,则dz/dx=1+dy/dx=1+1/cos(x+y)=1+1/cosz=(cosz+1)/cosz
故
cosz/(1+cosz)*dz=dx
[1-1/(1+cosz)]dz=dx
{1-1/[(1+2cos^2 (z/2)-1}dz=dx
[1-1/2*sec^2 (z/2)]dz=dx
两边分别积分得
z-tan(z/2)=x+C
也即
(x+y)-tan[(x+y)/2]-x=C
或
(x+y)-sin(x+y)/[1+cos(x+y)]-x=C