"齐次"表示各个未知数的次数是相同的.例如y/x+x/y+a=1等,它们的右端,都是未知数的齐次函数或齐次多项式
一阶线性微分方程,定义:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项.(这里所谓的一阶,指的是方程对于未知函数y及其导数是一次方程.)
当Q(x)≡0时,方程为y'+P(x)y=0,这时称方程为一阶齐次线性方程.(这里所谓的齐次,指的是方程的每一项关于y、y'、y"等的次数.因为y'和P(x)y都是一次的,所以为齐次.)
当Q(x)≠0时,称方程y'+P(x)y=Q(x)为一阶非齐次线性方程.(由于Q(x)中未含y及其导数,所以是关于y及其各阶导数的0次项,因为方程中含一次项又含0次项,所以为非齐次.)
一阶线性微分方程的求解一般采用常数变易法.