∵∠A=α,
∴∠ABC+∠ACB=180°-α,
∵BO、CO分别是∠ABC与∠ACB的角平分线,
∴∠OBC+∠OCB=
1
2 ∠ABC+
1
2 ∠ACB
=
1
2 (∠ABC+∠ACB)
=
1
2 (180°-α)
=90°-
1
2 α,
∴∠BOC=180°-(∠OBC+∠OCB)=90°+
1
2 α.
故选B.
∵∠A=α,
∴∠ABC+∠ACB=180°-α,
∵BO、CO分别是∠ABC与∠ACB的角平分线,
∴∠OBC+∠OCB=
1
2 ∠ABC+
1
2 ∠ACB
=
1
2 (∠ABC+∠ACB)
=
1
2 (180°-α)
=90°-
1
2 α,
∴∠BOC=180°-(∠OBC+∠OCB)=90°+
1
2 α.
故选B.