对每一 x0 ∈ [a,b],对任意ε > 0,取δ = ε/L > 0,则任给 x ∈ [a,b]:|x - x0| < δ,由假设,有
|f(x) - f(x0)| ≤ L|x - x0| < Lδ = ε,
据连续的定义,可知f(x) 在 [a,b] 上连续.
其次,由条件f(a)*f(b) < 0,利用闭区间上连续函数的介值定理,即知至少有一点 ξ ∈ (a,b),使得
f(ξ) = 0.
对每一 x0 ∈ [a,b],对任意ε > 0,取δ = ε/L > 0,则任给 x ∈ [a,b]:|x - x0| < δ,由假设,有
|f(x) - f(x0)| ≤ L|x - x0| < Lδ = ε,
据连续的定义,可知f(x) 在 [a,b] 上连续.
其次,由条件f(a)*f(b) < 0,利用闭区间上连续函数的介值定理,即知至少有一点 ξ ∈ (a,b),使得
f(ξ) = 0.