令系数都为0就可以了吧.
证明:n维零向量可以由任意的n维向量组α1.α2...αn线性表示.
1个回答
相关问题
-
任一n维向量可以由n维向量组α1.α2.…αn线性表出.证明α1.α2.…α
-
已知n维向量组α1 α2...αS(s≦n)线性无关,β是任意的n维向量,证明:向量组β,α1,α2...αS中
-
线性代数已知n维向量组α1,α2,……αm(m<n)线性无关,则向量组α可由向量组β线性表示是不是n维向量组β1,β2,
-
证明α1,α2,…αn线性无关充分必要条件是任一n维向量都可以由它们线性表示
-
高等代数证明问题设向量β可以由α1α2…αn线性表示,但不能由α1α2…αn-1线性表示.证明,向量组{α1α2…αn}
-
设α1,α2,…,αn是一组n维向量,已知n维单位坐标向量e1,e2,…,en能由它们线性表示,证明:α1,α2,…,α
-
设α1,α2,…,αn是一组n维向量,已知n维单位坐标向量e1,e2,…,en能由它们线性表示,证明:α1,α2,…,α
-
设α1,α2,…,αn是一组n维向量,已知n维单位坐标向量e1,e2,…,en能由它们线性表示,证明:α1,α2,…,α
-
设α1,α2,…,αn是一组n维向量,已知n维单位坐标向量e1,e2,…,en能由它们线性表示,证明:α1,α2,…,α
-
证明: 若n 维向量α1≠0,α2不能由α1线性表示,α3不能由α1,α2线性表示,则α1,α2,α3线性无关